近年来, 零霾越 来越成为公众最为

关心的环境健康问 题。各地 PM2.5 指 数频频"爆表",不仅 让路上的行人戴上 了口罩,更让很多人 开始注重室内空气 的质量。人们纷纷购 置空气净化器,出于 对孩子身体健康的 担忧,很多家长甚至 强烈要求给学校赠 送空气净化器。 然而,面对雾 霾,空气净化器有的 时候并不是最优的 解决方案。市售的大 部分空气净化器,是

的洁净, 但是也会产生新鲜空气 供应不足、二氧化碳浓度过高的 问题。教室、办公室内的人员数量 远超一般家庭的居住人数,而且 多为开放式,人员进出走动,不断 将外界的污染带人,空气更加污 浊,普通的空气净化器难以适应 这样的需求。针对这一问题,上海 交诵大学的施建伟教授提出了新 的净化概念:新风+净化,利用高 压静电催化耦合技术,结合新风 系统,实现全屋有氧净风,既能大 大提高新鲜氧气的供应量,又保 证了空气净化的高质高效

采用对室内空气进

行循环过滤的净化 模式。这样的净化模

式可以适用于一般

的家庭:人员较少,

门窗紧闭,反复过滤

之下,可以保证空气

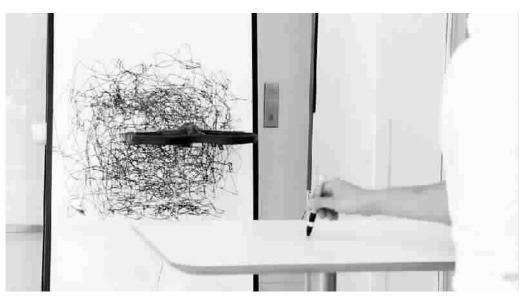
由此,上海复荣环境科技有 限公司和上海交通大学联合研发 的一种新型高效净化装置,它的 工作原理可以形象地形容为"两 道防线":第一道"防线"是利用高 压静电去除 PM2.5 等颗粒物杂 质,相比传统的过滤装置,这一过 程不需要耗费滤芯, 也不会产生 因使用时间过长、滤芯上沉积灰 尘、反而将空气污染的问题;第二 道"防线"是"催化门",利用静电 所释放的具有高能量的活性物种 克服势垒,驱动催化反应,在室温 下对甲醛、TVOC 等有机污染物 进行高效的催化氧化分解。同时, 静电与催化耦合结合,还可以将 大气中(以及打印机等办公用品 产生的、高压静电释放的)臭氧等 有害物"化敌为友",反应产生的 氧气、二氧化碳和水都是无害物 质,保障呼吸健康。

相比需要频繁更换 HEPA 网

的空气净化器,全屋有氧净风系 统采用高压静电催化耦合技术, 除尘不需滤网,没有维护成本,也 不会产生颗粒物堆积、二次污染 的问题; 系统在运行同时可以引 入新风,平衡空气中的二氧化碳 含量,保证空气的新鲜;高压静电 可以高效杀灭空气中的细菌与病 毒,极大地降低传染病的传播几 率,切实保障室内人员的身体健 康。同时,室内的家具和建材往往 会产生甲醛等有害气体,全屋有 氧净风系统在净化祛除 PM2.5 的同时, 还可以利用自身高压静 电产生的臭氧, 在催化板的辅助 下对这些有机污染物 TVOC 进行 有效的分解,保证室内空气的健 康新鲜。全屋有氧净风系统采用 "新风+净化"的理念,既能够从 多种角度保证对空气进行全面高 效的净化,又保证了新鲜氧气的 供应,真正同时实现了"健康呼 吸"和"新鲜呼吸",这是普诵空气

净化器所难以达到的效果。彭友

无人机为你放大复制绘画

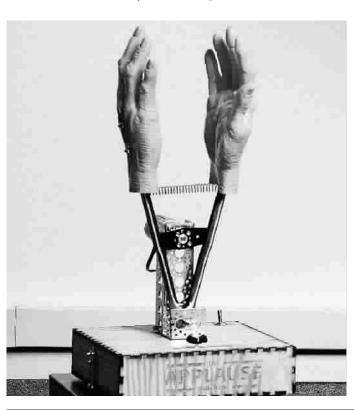

无人机,又以它奇特的方式带 给我们一个新的惊喜。

嗡嗡的机器在悬停中,"目"不 转睛地注视着画家握笔的手。当艺 术家绘画时,无人机实时将线条复 制到墙上的白板纸。

设备的研制者是美国麻省理 丁学院媒体实验室的流体界面小 组,他们将该无人机命名为"飞 弓"。画家是操作者,手里拿的还是 一支笔,不过系统让它带上了鼠标 的特性。笔在人手中的任何移动都 被系统立即拷贝,后者用算法计算 出路线,指挥新的"表达者"——带 笔的飞弓无人机——复制到目标

当然,还是会有许多不同的: 比如,原作是小小的,复制画可以 很大; 画家脚踏实地在眼前画, 无 人机则不惧爬高, 也可以画在远 处; 画笔在水平面上比划, 无人机 的画面则是垂直的;人手的移动比 较稳定,而无人机在空中还有额外 的摆动。

飞弓不仅是人类艺术家的机


械延伸,它的无人机特征也在表达 中起着特别的作用,它的运动学和 软件智能,给绘画添加了新的视觉 语言。即使那一点歪歪扭扭,也反 而带来不同的美学因素,好像是故

意为之的。

这看上去就像你拿着不太灵 敏的鼠标,在电脑上操练一个绘图 软件: 也不由得让人想起老式的放 大机,那是个专门的装置,帮助你

将小画稿放成大尺寸。当然,更值 得想象的是,如果飞弓的笔握在儿 童画家手中,我们会看到怎样的新 鲜画作。

为"粉丝"造一台鼓掌机

瑞典女发明家西蒙·吉茨往 往制诰一些今人啼笑皆非的玩意 儿。比如,戴上后能给你刷牙的头 盔、疯狂敲头叫醒你的手,以及另 类的切碎机。这些天,她又捣鼓了

她去看惊艳绝伦的表演,整个 晚上都在鼓掌,人累臂酸,通红的 手掌阵阵灼热。她给双手照张相之 后,决定要为21世纪酷热的粉丝 们创造了一台便携式鼓掌机。高仿 的声音、速度控制、自定义激光,让 鼓掌机代你鼓掌。

她一开始找来的只是厨房用 的夹子,夹子下面附加弹簧,在两 臂之间安上带椭圆旋轮的直流电 机。电机旋转,带动夹子打开、关 闭,作出拍手动作。

至于机器的手,她需要找到发 出的拍手声最接近现实的。西蒙从 零件商店买了4种不同类型的塑 料手,经过实验确定,一种硬质塑 料制成的空心手创造的掌声最像。 -对空心手用小螺栓固定在夹子 的两片叶上

配备电源的时候她遇到了麻

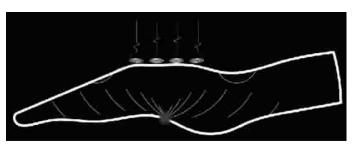
烦。鼓掌机用 Arduino UNO 控制, 这是一种廉价的小单片机,它的擅 长是阅读传感器数据、管理马达, 但只有5伏输出,而不是直流电机 运行所需要的12伏。为解决这个 问题,她在 Arduino 和电机之间增 添了 MOSFET 晶体管 (金氧半场 效晶体管), 实现用较低的电压控 制需要较高电压的电机。

-台机器初见端倪,接通电 源,先为自己鼓起掌来。

西蒙知道鼓掌速度往往也分 三六九等,于是给机器增添了一个 用来控制速度的滑块。现在,它能 从舒缓的慢拍文艺范,逐步增加到 惊破天的狂热级别,每分钟竟能高 达330拍。对了,还得装上可以自 己设定、控制的助兴激光。

经过测试后,她自信自己的鼓 掌机将使过去痛苦的拍手经历变

当然我们会问,真的需要一台 鼓掌机? 直能提着它去万体馆, 小 巨蛋吗?不过也无所谓啦,西蒙·吉 茨"海阔天空"的想象力,还是值得


小时候你一定玩过这样的游 戏:闭上眼睛,摊开手掌,让小伙伴 在你手心写个字、画个图,你来猜写 的是什么。

英国科学家最近进行了一些有 趣的研究,成功地让超声波透过手 堂,在手心上创建了触觉。这项属于 皮肤触感(Skinhaptics)的创新研究 由瑟赛克斯大学主导, 诺基亚研究 中心和欧洲研究委员会资助, 朝着 借用皮肤作为触摸屏的设想又接近 了一步。

在实验中,科学家从手背一 面发送几束超声波,并采用"时间 逆转"的处理,控制超声波在通过 手掌后,精确地收拢到手心上的 某个点。上述的过程可以比为石 子掉进水面激起的涟漪, 不过其 波的行进方向不是发散的, 而是

就这样, 手心上就有了感觉

"聪明的手"接受超声波信号

点,特定的感觉点组合起来,就有 可能表达某些信息。主人不需要做 什么动作, 手掌被腾出来充当了

眼下,一些科技公司正在关注 能否将人体的某一部分(特别被注 意的是手) 作为下一代智能手表等

智能设备的扩展显示。现有的想法 大多基于振动或触针,这些都需要 接触到手掌才有效果, 而表达的断 续也是缺点.

皮肤触感研究的目的, 就是为 了解决该领域这个基本的挑战。这 些研究得益于快速成长的技术领

-触觉学,它借助触摸的感觉 和控制,来与计算机应用程序实现 交互.

瑟赛克斯大学研究小组的带领 者史利南·苏布拉马尼亚教授说,我 们进到设计师称为"不用眼睛"技术 的时代,就需要调动其他的感官,如 触觉。"可穿戴设备作为一个行业已 经做大,而且会更大。而穿戴部件越 做越小,阅读频度也低,因此多感官 能力变得更加重要。

"想象你骑着自行车,想通过智 能手表改变音量控制, 那手表上的 互动空间就显得太小了。我们得研 究如何将这个空间扩展到用户的手 上。让人们在诵讨手讲行互动时,有 感受行为的能力。 比尔