新民网:www.xinmin.cn 24 小时读者热线 962288

责任编辑 丹长江 视觉设计 黄 娟

辐射评估探测器RAD

好奇号本身根本不介意辐射, 但有 朝一日要送去火星的人类探险者对这可 能很挑剔。也就是说,辐射评估探测器的 工作是为未来人类探索火星做准备。

RAD 的大小就像烤面包机,它将观 察火星大气,并借助硅探测器和碘化铯 晶体测量宇宙线和太阳粒子。高能量带 电粒子从火星大气进入探测器时, 会产 生电子或光脉冲, RAD 据此确定粒子的 能量。这还可能告诉我们辐射对火星上 (可能存在的)生命进化的阻碍作用。

桅杆相机Mastcam

星球探测车上绑一台相机并不鲜 见,但数好奇号的这台 Mastcam 最为先 进。它会采集彩色图像和视频,还能自行 将图像拼合起来,形成红色星球峡谷的 美丽全景。

它的高分辨率镜头每秒能拍摄 10 帧高清视频; 单色设置下则能采集黑白 图像,帮助分析不同频段电磁频谱的光 学模式。这个信息量将会非常巨大,但桅 杆相机的内部数据缓冲区可以存储数千 张图片或者数小时的高清视频, 以便送

火星实验室再入和着 陆仪MEDLI

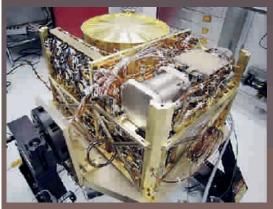
好奇号进入火星大气,是工程师们多 有担心的阶段(当然,现在没事了)。下降 过程中, 火星实验室再入和着陆仪 (MEDLI) 会持续工作,实时测量直径达 4.5 米的热防护系统从进入火星大气、降 落,到着陆全过程中的温度和气压。这些 数据对今后的火星计划至关重要。

这组仪器由 MISP (集成传感连接 器)和 MEADS(火星进入大气数据系统) 两部分组成,共有7组,装置在好奇号的 热屏蔽区域。

MISP 测量穿过火星大气而燃烧时 的温度(大致是航天飞机通过地球大气 层时的 3 倍);另外,它还测量热保护系 统在下降中烧毁的速率。

MEADS 测量降落中的大气压力。7 个交叉排列的传感器提供了好奇号的实 际方向随时间变化的函数。科学家可将其 与预测值作对比,以便下一次做得更好。

化学分析相机 ChemCam


ChemCam 是一台分析用的激光相 机, 堪称好奇号上最"未来派"的工具。它 发出的激光指向直径仅1毫米的小点, 使这里的物质蒸发, 随即探知组成它的 元素。摄谱仪监测岩石和土壤在激光轰 击下产生的等离子体,这是分析其地质 构造的一个依据。

激光还可以用来清除灰尘, 以便得 到更详尽的照片。好奇号有时需要靠近 某一地点仔细察看,借助 ChemCam 就能 从7米之外做到这一点。它能相隔这段 距离对样本中的岩石类型、土壤成分进 行研究,了解样本中是否含有对人体有 害的化学物质,是否含有水或冰。

火星实验室机械臂相机 MAHLI

好奇号贵为"超级地质学家",偶尔也 需要日用科技的援手,如地质考察中常用 的工具——放大镜。当然,它带的是"机器 人版"的透镜相机,装置在2.1米长机械 臂的顶端,也就是通常的"手部"位置。

体宽仅 4 厘米的 MAHLI 提供极其 接近样本的观察效果,它的2M彩色 CCD 能拍摄小到直径 12.5 微米区域(小 于人头发丝的粗细)的彩色图像。由于既 配备了传统白色光源, 还备有紫外线光 源、黑光源,这使它能日夜工作。紫外线 灯还有不寻常的功能:可以照射样本,检 测碳酸盐和蒸发的矿物,它们有可能成 为水在火星形成过程中作用的证据。

E-mail:dcj@wxjt.com.cn

■ 火星样本分析仪 SAM

套用孔老夫子时代 的一句名言,"工欲善其事,必先利其器"。这次我 们要说的是8月6日刚 刚在火星盖尔陨坑着陆 的美国好奇号火星车。

好奇号将在随后的 个火星年(相当于地 球上的687天)中完成 -系列考察任务,让人类 以前所未有的深度了解 这颗红色星球的奥秘,包 括其表面成分、水的含 量、生命的存在(或过去 存在的证据),探测火星 是否具有(或有过)支持 微生物生存的环境,从而 确定火星是否具有可居


为此,科学家和工程 师在好奇号上集中了机器人探测仪器中的最新创造,借鉴了以往星球探 测器的成功和失败。好奇 号装置的十大科学考察 利器,件件都比自己的前 辈更胜一筹,这也使它成 为有史以来最先进的星

火星车环境监测站REMS

好奇号不仅是伟大的地质学家, 环境监 测站(REMS)还把它变身为宇宙气象学家。在 每日报告和季度报告中,REMS将向科学家 发送有关大气压力、湿度、紫外线辐射、风速 风向, 气温和地面温度的信息。

监测风速能帮助理解微风和火星上最常 见天气现象之一尘爆的形成过程。暴露在大 气中的传感器将记录压力随气候的变化,有 滤网阻挡有害粉尘讲入。

α粒子X射线光谱仪APXS

APXS 能完成近距离作业,取得对样本 的准确分析。它会用 α 粒子与机载的放射性 元素衰变所释放的 X 射线去轰击目标区的 岩石或土壤。射线将一些电子轰离轨道,而其 释放的能量可用传感器测量, 从而推断出这 是钠,还是其他元素。

它能昼夜工作,完成详尽分析也很快。通 常只要2至3小时就能确定样本包含的所有 元素;或在10分钟就能报出样本的主要构成。

化学和矿物X射线 衍射仪CheMin

好奇号的使命中也包括对火星历史的探 索,而矿物可以提供有关火星形成过程的有 力证据。比如,特定的矿物可能表明熔岩曾经 流经某区域。CheMin 的任务就是发现这些线 索并加以分析。

好奇号能在岩石上打钻,收集粉末以便分 析、储存。CheMin 向岩石或土壤目标发射微量 X射线,在这个交互过程中,有的射线被吸收, 有的则以不同的能量反射。计算这些能量, CheMin就能确定样本中有什么原子。

它们发现的矿物也可能提示水在火星形 成过程中的作用。CheMin 还可以区分含水和 不含水的矿物,这可能给科学家关于火星是 否曾支持生命的线索。

火星样本分析仪SAM

由3部分组成的SAM可算是好奇号上的 庞然大物,它占用了好奇号有效科学载荷的一 半以上,工作重点是寻找火星存在生命的证 据。内置的质谱仪、气相色谱仪、可调谐激光谱 仪能找到碳化合物(如甲烷),也寻找那些可能 与生命有关联的较轻元素(如氢、氧、氮)。

质谱仪将分离出要研究的元素, 气相色 谱仪加热样本使其蒸发以便分析, 激光谱仪 测量样本中各种同位素的含量。由于能精确 到千分之十以内,这可能是好奇号发现(过去 或是现存的)生命的最好机会。

中子动态测量仪DAN

好奇号想在火星上找水,当然并不指望在 这里碰上个水坑,它自有独特的找水方式。我们 知道,火星表面受到宇宙线的不断撞击,一些中 子被撞出轨道。而水或冰中的氢原子会使这些 中子减慢速度,而这个速度是可以检测的。

DAN 会向星体表面发出中子束,深入表 面以下1到2米,如果检测到大量的慢中子, 就是底下有水的充分证据。DAN 可以检测出 小至千分之一的微量含水。 凌启渝

火星车环境监测站

■ 化学和矿物 X 射线衍射仪 CheMin