New wisdom

新民网:www.xinmin.cn 24 小时读者热线 962288 E-mail:dcj@wxjt.com.cn 责任编辑 丹长江 视觉设计 窦云阳

款可重复利用的火箭

在已有的航天器发射过程 中,火箭是很大的一笔一次性开 销,因为火箭升空的过程就是自 我牺牲的过程。一次航天发射任 务之后,火箭只剩下几乎没有多 少再利用价值的残骸。美国一家 民用太空公司决定改变火箭的 命运,它们开发出世界上第一款 可以重复利用的火箭。目前,这 款火箭已经成功完成两次短距

重复利用节约成本

目前,已经完成航天器发射 任务的各种火箭都是一次性的, 完成任务后就变成了残骸掉落到 地面上。一次航天发射任务,火箭 的开销就会花费数千万元人民 币。然而,按照现在的设计,火箭 要回收要加装隔热设施、降落控 制器、缓降设备。就算这样,火箭 在经过穿越大气层的高温灼烧和 降落到地面的冲击之后,火箭发 动机不可能毫发无损,维修又是 一大笔费用。根据以往的研究,回 收利用火箭的费用比新造火箭还 要大,这就是各国放弃回收利用 火箭的原因。

然而,美国的太空探索公司 (SpaceX)还是认为不对火箭重新 利用真是太可惜了。于是,他们开 始研制可以像航天飞机那样可以 重复利用的火箭。现在,他们已经 初步获得成功,研制出一款名为 "蚂蚱"的可重复利用火箭。之所 以取名"蚂蚱"(Grasshopper),是 希望新的火箭能像蚂蚱那样随意 起降而不会损伤自己。

两次测试获得成功

2012年11月,太空探索公 司完成了第一次测试,这架火箭 飞了 5.4 米高,飞行距离为 1.8 米,飞行过程历时8秒。按照这个 高度和距离来看,"蚂蚱"似乎更 像一款玩具,它甚至比不上节日 烟花飞行的高度和距离。不过, "蚂蚱"并非玩具,它是一架真正

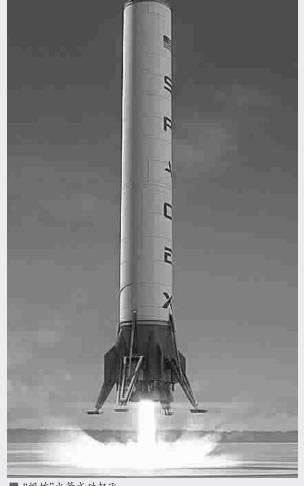
完备,设置最像直人。

的仿生机器人。

我们见过太多机器人了, 仿生的机器人龟、

机器人蜂鸟、机器人松鼠,足够开个机器人动物 园;还有不少能装"萌"的人形机器人,会像模像 样地模仿人的动作言语。而今天这位"郎"机器

的火箭,有40米的"身高",这个 高度并不输于其他火箭。


在 2012 年 12 月中旬的一次 测试中,它飞了40米高,历时29 秒。更加令人兴奋的是,它又返回 来了, 稳稳当当地降落在发射台 上,没有出任何差错。这次发射再 次验证了"蚂蚱"的垂直起降技术 和飞行控制技术已经比较成熟。 为了在空中完成盘旋和降落等动 作,"蚂蚱"采用了闭环矢量推力 和油门控制技术。为了让人们对 "蚂蚱"有一个更直观的认识,太 空探索公司把一个2米高的牛仔 造型假人装在火箭的起落架上。

"蚂蚱"的起落架支撑范围较 大,在飞行期间可被折叠起来,并 有技术十分先进的隔热设施,避 免起落架在穿越大气层时因高温 而损坏。起落架有4条起落腿,在 即将降落的时候,"蚂蚱"才像飞 机那样把起落腿慢慢伸出来。由 于采用了液压减震器和钢支撑结 构,"蚂蚱"可以安全稳定地垂直 降落,并不需要飞机那样的滑行

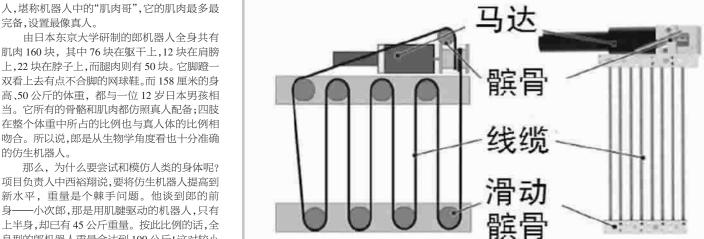
航天领域的新革命

接下来,"蚂蚱"要一步步地 增加升空高度。 随着高度的增加, 隔热保护设施的测试就显得更加 重要了。如果最终的测试显示它 能完成几百公里高度的往返过 程, 那么这种火箭将可能引发航 天领域的新革命,未来的太空发 射成本将会大大降低, 平民化的 太空旅游时代才能真正到来。

有了可重复利用的火箭,讲 行多个行星间的连续探索才会变 得可行。太空探索公司的创始人 艾伦·马斯克表示:"如果人类希 望在未来任意穿梭于多个行星之 间,可以多次利用的火箭会是必 不可少的交通工具,否则人类将 寸步难行。"马斯克希望有一天在 火星上建造一个殖民地, 而可重 复使用火箭是实现这一梦想的 "关键一步"。 阿碧

■"蚂蚱"火箭成功起飞

■ "蚂蚱"火箭起落架中的减震设备


■"蚂蚱"火箭的起落架

■"蚂蚱"火箭点火起飞

机器人中的肌肉哥

是大腿肌肉 4 公斤、小腿 2.76 公斤,与其相似。

除了重量,研究人员也试图达成真人肌肉的 力矩和关节活动的速度。郎的总输出功率是小次 郎的5倍以上,它能像体操运动员那样潇洒地抬 腿。郎的关节扭矩与人几乎等量;但关节角速度 不如真人,大约是70-100度/秒。这是兼顾重量

和功率的结果,如果采用更强更大的电机,往往 就会比较重。

与小次郎一样,郎也是由滑轮状肌肉系统(如 图)驱动的,不过这次采用的不是先前的点至点 肌肉,而是扁而宽的平面状肌肉。肌肉由单一电 机启动,提高了稳定性。这些电机赋予郎机器人

64 个自由度(双手除外): 其中脖子和双臂各 13

个,两条腿各7个,而脊柱11个自由度 郎的铝制骨骼结构看上去相当有型,肋骨架

特别令人印象深刻,比先前用三维打印作的骨架 (往往会破损)更加坚固;而郎的膝盖关节还包括 仿真的十字韧带和能滑动的髌骨。 凌启渝

上半身,却已有45公斤重量。按此比例的话,全 身型的郎机器人重量会达到 100 公斤!这对较小 型机器人来说是太重了。 于是项目组决定更彻底地向真人学习. 用与 人相当的重量比来设计机器人的肌肉和骨架。从 2010年开始,他们给小次郎机器人增添更多的肌

肉和电机, 使新机器人郎的基础成为迄今最接近 直人的结构。比如说,55 公斤的男孩大腿上有约 5 公斤肌肉,小腿上2.5公斤。而郎最后采用的比例