科技点亮生活 创新改变未来

上海交大水下所研制成十余个大型潜水器和水下装备

打造探究深海的"兄弟莲"

科创新地标

2016年9月,中国国土资源部发布战略规划,称将在未来5年提高 深地、深海和深空的探测能力,并提出在2020年前开发1.1万米的深海 潜水器,进军"挑战者深渊"——马里亚纳海沟。2016年,国家科技部推进 "深海关键技术与装备"重点专项,全力推进全海深潜水器研制。上海交通 大学葛彤教授领衔的团队牵头的"全海深无人潜水器(ARV)研制"成为获 得国家重点研发计划支持项目。

葛彤教授来自上海交大船舶海洋与工程学院水下工程研究 所,这是国内最高水平的深海技术和装备研究机构之一。3500 米海龙号无人遥控潜水器(ROV)、4500米海马号ROV、6000米 重载 ROV、万米级龙皇号 ROV,还有各种水下作业机器人,自上 世纪80年代成立至今,水下所完成了十余个大型潜水器和水下 装备的研制,这些探究深海的能手足足组成了一个"兄弟连"。

鼓足劲打破技术封锁

朱继懋教授主持设计研制了我国第一艘深潜救生艇、第一 台无人遥控深潜器,被国际同行誉为"中国深潜之父"。上世纪 80年代,国内整个水下工程尚处于起步阶段,国产化水下工程 设备的应用一片空白,中国科学家只能引进些国外淘汰的技术

实际上, 早在上世纪70年代, 国际上就开始采用无人谣控 潜水器代替潜水员在海洋石油开发方面开展工作, 国内还在大 力研究的饱和潜水系统则由于生产成本和维护成本都非常高、 人员的安全性得不到保障已被发达国家逐渐淘汰。于是,朱继懋 将研究方向瞄准潜水器、他带着一支队伍开始了长达几十年的 国产设备研究之路。

找准了方向,朱继懋团队鼓足干劲,顺利研发出第一台国产 化 ROV 产品—SJT40,接着一鼓作气,在上世纪 80 年代就完成 了7种型号ROV的研制和应用。因此,交大水下所也成为国内 最早进行无人遥控潜水器和载人潜水器的单位。

海洋能手接连"出世"

2002年,水下所开始研制 3500米级大型深海 ROV 作业系 统,经过9年的艰辛努力,"海龙号"ROV系统成功"出世"。当时 它创下了我国ROV系统最大的深潜纪录及多项重大深海探测 发现记录,无论性能还是控制方式都超过国际同类型 ROV。交付 中国大洋协会使用后,"海龙号"已经在多个环球科学调查航次 任务中发挥了重要作用,获得2012年度国家科技进步二等奖。

近10年,葛彤教授已从朱继懋教授手中接过水下所的指挥 棒,开发一系列"水下高手"。"海龙"的兄弟也接二连三地成功研 -海龙3号已经通过6000米海试;海马号4500米级深海 作业系统,实现装备系统的国产化,摆脱深海装备技术受制于人 的被动局面:还有90吨重型海底开沟机"海象",可以进行海上 沉船沉物打捞、深海钻探取样及海底特种管线安装等工作的"海 鳗"等等,这些交大水下能手全部在海洋工程和科研一线发挥着 作用。

掌握万米级关键技术

2020年前开发 1.1 万米深海潜水器的任务对交大团队来说 势在必得。实际上,万米级 ROV 的研制已经在几年前启动,目前 最大工作深度达 11000 米龙皇号已研制出两代试验样机,而且 完成了航行实验和全系统万米级耐压实验。龙皇号和其他水下 兄弟的关键技术将用于全海深 ARV。作为全海深无人潜水器项 目顾问专家组组长,朱继懋教授介绍,"从技术上来说实验室已 经没有问题了,而且这一次,整台设备的国产化将达到90%以 上。但项目还要通过多次海试进行安全性和稳定性测试。

不过,挑战依然存在。"眼前最大的挑战是缺人。随着中国水 下工程发展,更多机构开始研究潜水器,人才需求大了。最近10 年,尽管骨干队伍稳定,但水下所先后走了一半人。我们目前的 规模仅有同行的十分之一。"朱继懋痛心地说,"另一个挑战来自 科研经费。一次海试一个航段至少一个月,人员、船等费用加起 来需要一千多万。但从实验室到应用,需要经过多次真实的海 试,这笔钱目前也还有缺口。 本报记者 易蓉

科普

中国工业设计博物馆

传统经典设计让人着迷

红旗牌轿车、上海牌手表、蝴蝶牌缝纫机、红灯 牌收音机、海鸥牌照相机……这些带着上世纪中国 民众深刻记忆的经典产品,用无声的语言向我们讲 述着中国现代工业设计一路走来的艰辛和曲折。

中国工业设计博物馆是国内首家以工业设计 为主题,展示设计师优秀设计产品和成果的场馆。 馆藏展品着重反映 1949 年新中国成立以来各个 历史时期批量生产的工业产品,并由此追溯中国 古代设计智慧,及近代的中国为实现工业化而努 力地史实。同时举办各类设计展览,向参观者介绍 国际最前沿的设计信息和趋势。

当代中国正从制造大国走向创造大国,工业设 计所带来的创新涉及领域广泛,正在持续提升企业

的核心竞争力。走进中国工业设计博物馆,不仅是 寻路更是问路,从本土设计传统中汲取的养料,无 疑最易于当代设计的消化和吸收。

本报记者 马亚宁

导游小贴士

地址:上海市逸仙路 3000 号 3 号楼 2F 门票:成人35元;1.3米以上儿童、学生(需出示 学生证)30元;团体(10或10人)以上30元;1.3米以 下儿童、70岁以上老人、现役军人、残障人士免票 开放时间:9:00---17:00(周一闭馆)

华东理工大学"超级科研团队"交成绩单

4年发表7篇《自然》子刊论文

然》子刊论文.1篇 《德国应用化学》论 文. 这个成绩的创告

者,是华东理工大学材料科学与工程学院杨化桂教 授带领的清洁能源材料与器件课题组。除了这份成 绩单,组建仅8年的课题组,还培养出了一批科研 新秀:以第一作者在《科学》上发表论文的青年教师 张波,以第一作者在《自然一通讯》上发表论文、获 得上海市长奖的师资博士后侯宇……

这个超级科研团队,是如何炼成的?

在杨化桂课题组,学生和老师在科研面前是平 等关系,共同拟定实验方案、解决难点问题。杨化桂 教授的学生由最初的6人发展到如今的20多人,杨 老师坚持每周与学生进行一对一交流指导。

在法国作家凡尔纳的经典科幻小说《海底两万 里》里,描写了当时世界上绝无仅有的潜水艇——鹦 鹉螺,靠提炼海水里的钠制成电池来发电航行。 "用水发电"何时能真实存在于人类的生活中?这正

是杨化桂课题组科研的方向之一-光/光电/电催化过程,分解水制取氢气燃料以及还 原温室气体 CO2 制取甲醇、乙烯等工业原料。

课题组的另一研究方向,是为新型太阳能电池 实现广泛工业化的进程提供助力。成本、效率、稳定 性,是制约太阳能电池工业化的三大关键因素。杨化 桂课题组针对三大难题一一进行破解:用 Fe203 催 化剂,以替代价格昂贵的白金;制备一种反蛋白石结 构的氧化钛阳极材料,将电池的光吸收效率从 11.00%提升到 13.11%,将电池转化效率提高到 15.71%; 首次将一类有机分子组装到钙钛矿表面, 实现钙钛矿材料表面分子结构的调控, 大幅提升了 钙钛矿层的湿度稳定性。

"科研就是在沙子里淘金子""我们现在做的成 果,放在漫长的人类历史上来看,会不会是噪音? "我们用着国家项目基金,就要做为人类发展谋福祉 的事情"……杨化桂教授经常冒出的"经典妙语",听 在学生人间耳中, 俨然是一位科研工作者对科研的 使命感和社会的责任感。 本报记者 张炯强